Effects of coals microscale structural features on their mechanical properties, propensity to crushing and fine dust formation

Author:

Kossovich ElenaORCID,Epshtein Svetlana,Krasilova Vera,Hao Jie,Minin Maxim

Abstract

AbstractThe work is dedicated to revealing the structural features of coals with different ranks, such as anthracites, metaanthracite and graphite, that determine their ability to crush and form fine dust. For this purpose, a combination of various nanoindentation techniques and Raman spectroscopy was used. The mechanical behavior of the selected coals was investigated by cyclic nanoindentation with increasing peak load and quasi-static loading. The alteration of the mechanical properties was studied by analysis of elastic moduli and damage indices Rw. Three groups of coals were identified based on their propensity to crushing during cyclic nanoindentation. Coals assigned to the first and second groups are characterized by local destruction in the contact zone with the indenter and the formation of a core of crushed material. Coals assigned to the third group are characterized by bulk destruction (outside the zone of contact with the indenter). In general, the ability of coals to fracture under mechanical loading decreases in the series of metamorphism due to microscale compaction of vitrinite matter. In the series of anthracite, metaanthracite and graphite, it is established that the coal matter compaction takes place for the anthracite and metaanthracite, whereas graphite reveals rather different behavior due to abrupt change of its structure. The ratios between the amorphous and crystalline phases of carbon (S) were determined by deconvolution of coals Raman spectra. The propensity of coals to crushing (a damage index Rw) increases with growth of the proportion of amorphous carbon in the coal matter. For the considered coals and metaanthracite, it is established that the proneness to destruction outside the contact zone with the indenter is determined by the ratio of amorphous and crystalline carbon of 1 and higher. When S parameter is lower than 1, the coals are being crushed only in the zone of contact with the indenter.

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3