Recovery of vanadium and tungsten from waste selective catalytic reduction catalysts by K2CO3 roasting and water leaching followed by CaCl2 precipitation

Author:

Liu Xianghui,Yang Qiaowen

Abstract

Abstract Waste selective catalytic reduction (SCR) catalysts are potential environmental hazards. In this study, the recovery of vanadium and tungsten from waste SCR catalysts by K2CO3 roasting and water leaching was investigated. The roasting and leaching conditions were optimized: the leaching efficiencies of vanadium and tungsten were 91.19% and 85.36%, respectively, when 18 equivalents of K2CO3 were added to perform the roasting at 900 °C for 2 h, followed by leaching at 90 °C for 1 h. Notably, in the described conditions, the leaching rate of silicon was only 28.55%. Titanates, including K2Ti6O13 and KTi8O17, were also produced. Si removal was achieved in 85% efficiency adjusting the pH to 9.5, and the Si impurity thus isolated was composed of amorphous Si. Tungsten and vanadium were precipitated using CaCl2. At pH 10 and following the addition of 0.10 mol of H2O2 and 16 equivalents of CaCl2, the precipitating efficiencies of tungsten and vanadium were 96.89% and 99.65%, respectively. The overall yield of tungsten and vanadium was 82.71% and 90.87%, respectively. Graphic abstract

Funder

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3