Effect of hydrothermal treatment on the carbon structure of Inner Mongolia lignite

Author:

Liu Peng,Zhang Dexiang

Abstract

AbstractUnderstanding the structural properties of lignite during hydrothermal treatment would aid in predicting the subsequent behavior of coal during the pyrolysis, liquefaction, and gasification processes. Here, hydrothermal treatment of Inner Mongolia lignite (IM) was carried out in a lab autoclave. The distribution of carbon in the lignite was monitored via solid 13C nuclear magnetic resonance spectroscopy, and the functional groups of oxygen in lignite were determined by Fourier transform infrared spectroscopy. The curve-fitting method was used to calculate the content of the functional groups quantitatively. The results show that hydrothermal treatment is an effective method for upgrading the lignite. The side chains of the aromatic ring in lignite are altered, while the main macromolecular structure remains nearly the same. The hydrothermal treatment of IM could be divided into three temperature-dependent stages. The first stage (< 493 K) is the decomposition reaction of oxygen functional groups, where the O/C ratio decreases from 0.203 in raw IM to 0.185 for the IM treated at 493 K. In the second stage (493–533 K), hydrolysis of functional groups and hydrogen transfer between water and lignite occur. Here, the ratio of methylene to methyl increases from 0.871 in IM-493 to 1.241 for IM-533, and the content of quinone generates from the condensation of free phenol increased. The third stage (> 533 K) involves breakage of the covalent bond, and the content of CH4 and CO in the emission gas clearly increase.

Funder

National Basic Research Program of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3