Learning distance effect on lignite quality variables at global and local scales

Author:

Yaylagul Cem,Tutmez Bulent

Abstract

AbstractDetermining scale and variable effects have critical importance in developing an energy resource policy. This study aims to explore the relationships in heterogeneous lignite sites using different scale models, spatial weighting as well as error-based pair-wise identification. From a statistical learning framework, the relationships among the quality variables such as geochemical variables and the contributions of the coordinates to quality measures have been exhibited by generalized additive models. In this way, the critical roles of spatial weights provided by the coordinates have been specified at a global scale. The experimental studies reveal that incorporating the geological weighting in the models as the additional information improves both accuracy and transparency. Because relationships among lignite quality variables and sampling locations are spatially non-stationary, the local structure and interdependencies among the variables were analyzed by geographically weighting regression. The local analyses including spatial patterns of bandwidths, search domains as well as residual-based areal dependencies provided not only the critical zones but also availability of pair-wise model alternatives by calibrating a model at each point for location-specific parameter learning. The results completely show that the weighting models applied at different scales can take spatial heterogeneity into consideration and these abilities provide some meta-data and specific information using in sustainable energy planning.

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3