Experimental analysis of pore structure and fractal characteristics of soft and hard coals with same coalification

Author:

Ullah BarkatORCID,Cheng Yuanping,Wang Liang,Yang Weihua,Jiskani Izhar Mithal,Hu Biao

Abstract

AbstractAccurate and quantitative investigation of the physical structure and fractal geometry of coal has important theoretical and practical significance for coal bed methane (CBM) development and the prevention of dynamic disasters such as coal and gas outbursts. This study investigates the pore structure and fractal characteristics of soft and hard coals using nitrogen and carbon dioxide (N2/CO2) adsorption. Coal samples from Pingdingshan Mine in Henan province of China were collected and pulverized to the required size (0.20–0.25 mm). N2/CO2 adsorption tests were performed to evaluate the specific surface area (SSA), pore size distribution (PSD), and pore volume (PV) using Braunuer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), and Density Functional Theory (DFT). The pore structure was characterized based on the theory of fractal dimensions. The results unveiled that the strength of coal has a significant influence on pore structure and fractal dimensions. There are significant differences in SSA and PV between both coals. The BJH-PV and BET-SSA obtained by N2-adsorption for soft coal are 0.029–0.032 cm3/g and 3.523–4.783 m2/g. While the values of PV and SSA obtained by CO2-adsorption are 0.037–0.039 cm3/g and 106.016–111.870 m2/g. Soft coal shows greater SSA and PV than hard coal, which is consistent with the adsorption capacity ($${V}_{\mathrm{L}}$$ V L ). The fractal dimensions of soft and hard coal are respectively different. The Ding coal exhibits larger D1 and smaller D2, and the reverse for the Wu coal seam is observed. The greater the value of D1 (complexity of pore surface) of soft coal is, the larger the pore surface roughness and gas adsorption capacity is. The results enable us to conclude that the characterization of pores and fractal dimensions of soft and hard coals is different, tending to different adsorption/desorption characteristics. In this regard, the results provide a reference for formulating corresponding coal and gas outburst prevention and control measures.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3