Author:
Du Feng,Ma Ji,Guo Xiaofei,Wang Tianfeng,Dong Xiaohang,Li Jiashuo,He Shulei,Nuerjuma Dilinaer
Abstract
AbstractThe rockburst dynamic disasters in the process of deep coal mining become more and more serious. Taking the rockburst occurred in the 23130 working face of Yuejin Coal Mine as the engineering background, we study the characteristics of mining stress field around roadway, the plastic failure morphological characteristics of surrounding rock and the accumulation/release law of elastic energy before and after burst. An analysis model quantitatively describing the physical process of rockburst in the mining roadway is established, and the calculation method of dynamic release of elastic energy in the physical process of rockburst is educed. The mechanism of rockburst in mining roadway is revealed. The results show that an “L-shaped” stress concentration zone is formed within 100 m of the 23130 working face, and the principal stress ratio of the surrounding rock of the transportation roadway is 2.59–4.26. The change of the direction of the maximum principal stress has a significant effect on the burst appearance characteristics. The failure strength of different sections of the mining roadway is characterized by the elastic energy release value. With the increase of the working face distance, the elastic energy released by burst failure and the expansion variation of failure boundary radius show a nonlinear variation law that tends to decrease steadily after sharp fluctuation. The closer to the working face, the higher the burst risk. At a distance of 10 m from the working surface, the maximum principal stress reaches its maximum value. The butterfly-shaped failure system generated by the surrounding rock of the roadway has energy self-sustainability, and the elastic energy released by the sudden expansion of the butterfly leaf is enough to cause a burst damage of 1.9 magnitude. This work could provide theoretical support for the prediction and prevention of rockburst.
Funder
National Natural Science Foundation of China
Research Fund of State and Local Joint Engineering Laboratory for Gas Drainage & Ground Control of Deep Mines
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献