Experimental study of coal fracture dynamics under the influence of cyclic freezing–thawing using shear elastic waves

Author:

Nikolenko Petr V.ORCID,Epshtein Svetlana A.,Shkuratnik Vladimir L.,Anufrenkova Polina S.

Abstract

AbstractCyclic freezing–thawing can lead to fracture development in coal, affecting its mechanical and consumer properties. To study crack formations in coal, an ultrasonic sounding method using shear polarized waves was proposed. Samples of three coal types (anthracite, lignite and hard coal) were tested. The research results show that, in contrast to the shear wave velocity, the shear wave amplitude is extremely sensitive to the formation of new cracks at the early stages of cyclic freezing–thawing. Tests also show an inverse correlation between coal compressive strength and its tendency to form cracks under temperature impacts; shear wave attenuation increases more sharply in high-rank coals after the first freezing cycle. Spectral analysis of the received signals also confirmed significant crack formation in anthracite after the first freeze–thaw cycle. The initial anisotropy was determined, and its decrease with an increase in the number of freeze–thaw cycles was shown. The data obtained forms an experimental basis for the development of new approaches to preserve coal consumer properties during storage and transportation under severe natural and climatic conditions.

Funder

Российский Фонд Фундаментальных Исследований

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3