Three dimensional discrete element modelling of the conventional compression behavior of gas hydrate bearing coal

Author:

Gao Xia,Wang Nannan,Zhang BaoyongORCID,Lin Qiqi,Wu Qiang,Meng Wei,Liu Xia

Abstract

AbstractTo analyze the relationship between macro and meso parameters of the gas hydrate bearing coal (GHBC) and to calibrate the meso-parameters, the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D, with the parallel bond model employed as the particle contact constitutive model. First, twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters. Then, nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters. Furthermore, the calibration method of the meso-parameters were then proposed. Finally, the contact force chain, the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC. The results show that: (1) The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient. The failure strength increases exponentially with the increase of the friction coefficient, the normal bonding strength and the bonding radius coefficient, and remains constant with the increase of bond stiffness ratio; (2) The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength; (3) The number of the force chains, the contact force, and the bond strength between particles will increase with the increase of the hydrate saturation, which leads to the larger failure strength.

Funder

National Natural Science Foundation Joint Fund Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3