Effect mechanism of nitrogen injection into fire-sealed-zone on residual-coal re-ignition under stress in goaf

Author:

Xu Yongliang,Liu Zejian,Wen Xinglin,Wang Lanyun,Lv Zhiguang,Wu Jindong,Li Minjie

Abstract

AbstractCoal is the one of foundations of energy and economic structure in China, while the unsealing of coal mine fires would cause a great risk of coal re-ignition. In order to explore the influence of pressure-bearing state on the re-ignition characteristics for residual coal, the uniaxial compression equipped with a temperature-programmed device was built. The scanning electron microscope, synchronous thermal analyzer and Fourier transform infrared absorption spectrometer was applied to investigate the microscopic structure and thermal effect of the coal samples. Moreover, the microscopic effect of uniaxial stress on coal re-ignition is revealed, and the re-ignition mechanism is also obtained. As the uniaxial stress increasing, the number, depth and length of the fractures of the pre-treated coal increases. The application of uniaxial stress causes the thermal conductivity to change periodically, enhances the inhibition of injecting nitrogen on heat transfer and prolonges the duration of oxidation exothermic. The content of oxygen-containing functional groups has a high correlation with apparent activation energy, and coal samples at 6 MPa is more probability to re-ignite while the fire zone is unsealed. Uniaxial stress could control the re-ignition mechanism by changing the structure of fractures and pores. The side chains and functional groups of coal structure are easier to be broken by thermal-stress coupling. The higher the ·OH content, the more difficult coal samples would be re-ignited. The research results would lay a solid theoretical foundation for the safe unsealing of closed fire-areas underground, tighten the common bond between the actual industry and the experimental theory in closed fire-areas underground, and provide the theoretical guidance for coal re-ignition preventing.

Funder

Fund for Creative Talents of Henan Colleges in China

Scientific Research Foundation of the Higher Education Institutions of Henan Province in China

National Natural Science Foundation of China

Key Science and Technology Program of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3