Sustainable reclamation practices for a large surface coal mine in shortgrass prairie, semiarid environment (Wyoming, USA): case study

Author:

Krzyszowska Waitkus AnnaORCID

Abstract

AbstractSustainable reclamation practices for large surface coal mines in USA semiarid environment contribute to the quality of the environmental on a long term basis where environmental resources are protected for future generation. Land, after reclamation, must be suitable for the previous use of greatest economic or social values to the community area. In the semiarid climate of USA, non-developed land is mainly utilized for crops, grazing, and wildlife. Completion of various stages of the reclamation processes includes verification and approval of reclamation criteria and performance standards created by state agencies. The sustainable reclamation practices were investigated at the USA’s largest surface coal mine of the semiarid environment in Wyoming. These practices include building post-mining topography to the approximate original contour and reestablish a stable hydrologic system to drain surface water. All available spoil material is backfilled and graded to achieve the post-mining topography which closely resembles the pre-mining topography. No overburden material or other coal waste material is left in stockpiles at the mine. Detailed planning until the end of mining, the knowledge of available volumes of suitable backfill material and soil is necessary for sustainable management practices. Diverse and permanent vegetation capable of stabilizing soil surfaces and capable of self-regeneration is established. Sustainable management of the reclamation effort is achieved by enforcement processes developed by the state and federal agencies. Monthly inspections of mining and reclamation operations and reviews of annual reports submitted by the operator help determine if the reclamation processes are occurring according to the permit plan.

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3