Effects of calcium on the evolution of nitrogen during pyrolysis of a typical low rank coal

Author:

Lin Xiongchao,Yang Sasha,Chen Xujun,Zheng Panpan,Wang Yonggang,Zhang Shu

Abstract

AbstractThis study aims to investigate the effects of calcium on the migration of nitrogen in coal (coal-N) to N-containing gas species, particularly, NH3 and HCN (volatile-N) in volatiles, as well as the chemical transformation of the N in char during coal pyrolysis under different temperatures. The pyrolysis experiments of Shengli brown coal and its derived coal samples loaded with different contents of calcium were conducted under 600–800 °C in a novel fluidized bed reactor. The experimental results showed that during coal pyrolysis, the generation of NH3 is mainly derived from secondary reactions among volatiles, tar and char with the catalytic effect of mineral matter, especially calcium in coal. Increasing pyrolysis temperature from 600 to 800 °C could enhance the release of N in coal to volatiles. Meanwhile, the increased pyrolysis temperature could also inhibit the generation of NH3 while facilitating the formation of HCN. The release of HCN is more sensitive to pyrolysis temperatures. Specifically, under higher pyrolysis temperatures, more N-containing structures in coal would become thermally unstable and crack into HCN; On the other hand, higher pyrolysis temperature could also enhance the decomposition of N in coal to N-containing species in tar or N2, thus reducing the release of HCN and NH3. Nitrogen in tar could either undergo secondary decomposition reactions, generating NH3, HCN, N2 and other N-containing species in gas phase, or experience condensation polymerization by forming macromolecular structure and be retained in char at high pyrolysis temperatures. Calcium could significantly restrain the release of N from coal, thus reducing the yields of NH3 and HCN. During coal pyrolysis, calcium catalytically enhances the fracture and combination of chemical bonds, generating abundant free radicals. These free radicals could continuously attack N-containing structures and consequently release the N-containing gaseous products, such as NH3, HCN, N2 etc., resulting in the decrease of N in char. Calcium also plays important roles in nitrogen transformation in char during coal pyrolysis by catalytically intensifying the transformation of N in char from pyridinic nitrogen (N-6) and pyrrolic nitrogen (N-5) to quaternary type nitrogen (N-Q) during coal pyrolysis.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3