Apparent activation energy of mineral in open pit mine based upon the evolution of active functional groups

Author:

Lu Shipng,Zhao JingyuORCID,Song Jiajia,Chang Jiaming,Shu Chi-Min

Abstract

AbstractThis study aimed to investigate the mechanism of mineral spontaneous combustion in an open pit. On the study of coal and mineral mixture in open pit mines, as well as through the specific surface area and Search Engine Marketing (SEM) experiments, the specific surface area and aperture characteristics of distribution of open pit coal sample and pit mineral mixture samples were analyzed. Thermal analysis experiments were used to divide the oxidation process was divided into three stages, and the thermal behavior characteristics of experimental samples were characterized. On the basis of the stage division, we explored the transfer law of the key active functional groups of the experimental samples. The apparent activation energy calculation of the key active groups, performed by combining the Achar differential method with the Coats–Redfern integral method, microstructural and oxidation kinetic properties were revealed. The resulted showed that the mixed sample had high ash, the fixed carbon content was reduced, the specific surface area was far lower than the raw coal, the large aperture distribution was slightly higher than the medium hole, the micropore was exceptionally low, the gas adsorption capacity was weaker than the raw coal, the pit coal sample had the exceedingly more active functional groups, easy to react with oxygen, more likely to occur naturally, and its harm was relatively large. The mixed sample contained the highest C–O–C functional group absorbance. The functional groups were mainly influenced by the self-OH content, alkyl side chain, and fatty hydrocarbon in the sample. The main functional groups of the four-like mixture had the highest apparent activation energy, and the two reactions were higher in the low-temperature oxidation phase.

Funder

The National Natural Science Foundation Project of China

Young Elite Scientists Sponsorship Program of China Association for Science, and Technology

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3