Using yttrium as an indicator to estimate total rare earth element concentration: a case study of anthracite-associated clays from northeastern Pennsylvania

Author:

Yang Xiaojing,Kozar Daniel,Gorski Daniel,Marchese Anthony,Pagnotti James,Sutterlin Rusty,Rezaee Mohammad,Klima Mark S.,Pisupati Sarma V.ORCID

Abstract

AbstractThis study demonstrated using yttrium (Y) as an indicator to estimate the total rare earth element and Y contents (REY) in coal-associated samples and to facilitate selection of samples with high REY assays in a fast and inexpensive manner. More than 10 anthracite-associated samples were collected from each of three Pennsylvanian sites (sites B, J and C) based on Thorium gamma ray logging suggesting high REY content. Several samples from each site were analyzed by ICP-MS to determine the rare earth distribution patterns and to establish the site-specific linear equations of Y and REY. The Y contents of the remaining samples were measured by a portable X-ray fluorescence analyzer, and the REY values were estimated based on the site-specific linear equation developed earlier. R-squared values above 0.70 were obtained for all the estimation equations from all three sites on both a whole sample basis and an ash basis. Previously, ash content has been widely used as an indicator of high REY content. This may not be applicable for a specific site. Site B in this study is an example where ash contents could not be statistically correlated with REY, so using Y for estimation is more applicable. The demonstrated sample screening process is suitable for samples from sites that share more similar distribution patterns (either MREY or LREY or HREY) as well as for samples from sites that share multiple distribution patterns (LREY/MREY/HREY) depending on the desirable accuracy. The demonstrated process lowers the analytical cost from $70 to 80 dollars per sample to $10–15 per sample while significantly reducing the processing time and acid consumption for ICP digestion. This is particularly true when a relatively large sample size is involved, for example, 100 samples from one site analyzed by ICP-MS/OES.

Funder

USDOE

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3