Characterization of 10 nm – 10 μm coal dust particles generated by simulated different cutting and drilling parameters: mass concentration distribution, number concentration distribution, and fractal dimension

Author:

Zhu Jintuo,Chen Menglin,Wang Liang,Sun Haisong,Wang Chenghao,Azhar Noor,Oduro Nkansah Benjamin

Abstract

AbstractNano-to-micron-sized coal dust can cause coal workers’ pneumoconiosis (CWP), and cutting and drilling are the main coal dust-generating processes. Based on a self-developed simulated coal cutting and drilling dust generation system, the effects of cutting parameters (tooth tip cone angle, impact angle, roller rotary speed, cutting speed) and drilling parameters (drill bit diameter, drilling speed) on the mass concentration distribution, number concentration distribution and fractal dimension of 10 nm – 10 μm coal dust were investigated. Results show that the mass concentration of 10 nm – 10 μm coal dust generated by cutting/drilling peak at 5.7 – 7.2 μm, while the number concentrations during cutting and drilling respectively peak at 60 – 90 nm and 20 – 30 nm. During both cutting and drilling processes, the generated coal dust particles in 10 – 300 nm account for > 90% of the total 10 nm – 10 μm coal particles, while PM2.5 in PM10 is generally below 18%. It is also found that smaller tooth tip cone angle, larger impact angle, lower roller rotary speed, smaller drill bit diameter, or lower drilling speed can reduce the generation of 10 nm – 10 μm coal dust with a fractal dimension of 0.94 – 1.92. This study reveals the distribution characteristics of nano- to micron-sized coal dust particles under different cutting and drilling parameters, and the research results can serve as reference for adjusting cutting and drilling parameters to lower down the 10 nm – 10 μm coal dust generation and thus prevent the CWP.

Funder

National Natural Science Foundation of China

Basic Research Program of Jiangsu Province

Anhui Province Key Laboratory of Human Safety

Project funded by China Postdoctoral Science Foundation

Jiangsu Planned Projects for Postdoctoral Research Funds

Graduate Innovation Program of China University of Mining and Technology

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3