Effective thermal conductivity in granular media with devolatilization: the Lattice Boltzmann modelling

Author:

Grucelski ArkadiuszORCID

Abstract

AbstractFlow thermomechanics in reactive porous media is of importance in industry including the thermal processing of fossil fuel (coking understood as a slow pyrolysis) involving devolatilisation. On the way to provide a detailed description of the process, a multi-scale approach was chosen to estimate effective transport coefficients. For this case the Lattice Boltzmann method (LBM) was used due to its advantages to accurately model multi-physics and chemistry in a random geometry of granular media. After account for earlier studies, the paper presents description of the model with improved boundary conditions and a benchmark case. Results from meso-scale LBM calculations are presented and discussed regarding the spatial resolution and the choice of relaxation parameter along its influence on the accuracy compared with empirical formulae. Regarding the estimation of effective thermal conductivity coefficient it is shown that occurrence of devolatilization has a crucial effect by reducing heat transfer. Some quantitative results characterise the propagation of thermal front; also presented is the evolution of effective thermal conductivity. The work is a step forward towards a physically sound simulation of thermal processing of fossil fuel.

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3