Experimental investigation on the nanoindentation viscoelastic constitutive model of quartz and kaolinite in mudstone

Author:

Sun Changlun,Li Guichen,Gomah Mohamed Elgharib,Xu Jiahui,Rong Haoyu

Abstract

AbstractThe creep behaviors in deep underground engineering structures, especially in soft rocks, have a remarkable impact on the long-term stability of the excavations, which finally leads to the high risk and failure of it. Accordingly, it is essential to recognize the time-dependent deformation through the investigation of this phenomenon. In this study, the creep behaviors of soft rocks were examined to help understand the underlying mechanism of the extended time-dependent deformation. Due to the limited results about the time-dependent properties of the constituents of the rock that reveal their heterogeneity, the targeting nanoindentation technique (TNIT), was adopted to investigate the viscoelastic characteristics of kaolinite and quartz in a two-constituent mudstone sample. The TNIT consists of identifications of mineralogical ingredients in mudstone and nanoindentation experiments on each identified constituent. After conducting experiments, the unloading stages of the typical indentation curves were analyzed to calculate the hardness and elastic modulus of both elements in mudstone. Additionally, the 180 s load-holding stages with the peak load of 50 mN were transformed into the typical creep strain–time curves for fitting analysis by using the Kelvin model, the standard viscoelastic model, and the extended viscoelastic model. Fitting results show that the standard viscoelastic model not only can perfectly express the nanoindentation creep behaviors of both kaolinite and quartz but also can produce suitable constants used to measure their creep parameters. The creep parameters of kaolinite are much smaller than that of quartz, which causes the considerable time-dependent deformation of the soft mudstone. Eventually, the standard viscoelastic model was also verified on the quartz in a sandstone sample.

Funder

Fundamental Research Funds for the Central Universities

Guizhou Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3