Numerical modelling of spatially and temporally distributed on-fault induced seismicity: implication for seismic hazards

Author:

Sainoki AtsushiORCID,Schwartzkopff Adam Karl,Jiang Lishuai,Mitri Hani

Abstract

AbstractInduced seismicity is strongly related to various engineering projects that cause anthropogenic in-situ stress change at a great depth. Hence, there is a need to estimate and mitigate the associated risks. In the past, various simulation methods have been developed and applied to induced seismicity analysis, but there is still a fundamental difference between simulation results and field observations in terms of the spatial distribution of seismic events and its frequency. The present study aims to develop a method to simulate spatially distributed on-fault seismicity whilst reproducing a complex stress state in the fault zone. Hence, an equivalent continuum model is constructed, based on a discrete fracture network within a fault damage zone, by employing the crack tensor theory. A fault core is simulated at the center of the model as a discontinuous plane. Using the model, a heterogeneous stress state with stress anomalies in the fault zone is first simulated by applying tractions on the model outer boundaries. Subsequently, the effective normal stress on the fault plane is decreased in a stepwise manner to induce slip. The simulation result is validated in terms of theb-value and other seismic source parameters, hence demonstrating that the model can reproduce spatially and temporally distributed on-fault seismicity. Further analysis on the parameters shows the variation of frequency-magnitude distribution before the occurrence of large seismic events. This variation is found to be consistent with field observations, thus suggesting the potential use of this simulation method in evaluating the risk for seismic hazards in various engineering projects.

Funder

KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3