Author:
Yin Kuibo,Li Haitao,Xia Yidong,Bi Hengchang,Sun Jun,Liu Zhiguo,Sun Litao
Abstract
Abstract
The thermodynamic state and kinetic process of low-temperature deoxygenation reaction of graphene oxide (GO) have been investigated for better understanding on the reduction mechanism by using Differential Scanning Calorimetry (DSC), Thermogravimetry-Mass Spectrometry (TG-MS), and X-ray Photo-electron Spectroscopy (XPS). It is found that the thermal reduction reaction of GO is exothermic with degassing of CO2, CO and H2O. Graphene is thermodynamically more stable than GO. The deoxygenation reaction of GO is kinetically controlled and the activation energy for GO is calculated to be 167kJ/mol (1.73 eV/atom).
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献