Author:
Wan Lei,Long Mingce,Zhou Dongying,Zhang Liying,Cai Weimin
Abstract
Abstract
Catalyst recovery is one of the most important aspects that restrict the application of TiO2 photocatalyst. In order to reduce restrictions and improve the photocatalytic efficiency, a hierarchical porous TiO2 monolith (PTM) with well-defined macroporous and homogeneous mesoporous structure was prepared by using a sol-gel phase separation method. P123 was used as the mesoporous template and graphene oxide was applied to increase the activity and integrity of the monolithic TiO2. According to scanning electron microscopy and the Barrett-Joyner-Halenda measurements, PTM3 is mainly composed of 10 nm anatase crystallines with 3.6 nm mesopores and 2–8 μm macropores. Further characterization suggests carbon and nitrogen have been maintained in the PTM during calcinations so as to induce the visible light activity. The PTM with 0.07 wt% graphene oxide dosage shows high efficiency for methyl orange (MO) decolorization under both full spectrum and visible light irradiation (λ>400 nm). Besides, the monolith remains intact and has good photocatalytic stability after four cyclic experiments.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献