Abstract
AbstractThe effectiveness of load-reduction techniques often diminishes due to creep behavior observed in geomaterials, as loess backfill is used, the load reduction rate of high-filled cut-and-cover tunnels (HFCCTs) after creep will decrease by 10.83%, posing a threat to the long-term stability of deeply buried structures such as HFCCTs. Therefore, a geotechnical solution is crucial to ensuring sustained effectiveness in load-reduction strategies over time. This study utilizes a finite-difference method to examine three promising measures for mitigating creep effects. Our analysis focuses on the time-dependent changes in earth pressure atop the cut-and-cover tunnel (CCT) and the internal distribution of cross-sectional forces, including bending moment, shear force, axial force, and displacement. Results indicate that the creep behavior of load-reduction materials significantly influences the internal force distribution. Furthermore, sustained load reduction is achieved when utilizing low-creep materials like dry sandy gravel as backfill soil, which needs to be borrowed from other sites. Additionally, integrating concrete wedges with load-reduction techniques facilitates a more uniform stress distribution atop CCTs.
Funder
the National Science Foundation of China
National Science Foundation of Gansu Province
Basic Research Innovation Group Project of Gansu Province
Science and Technology Project of Gansu Province
Industrial Support Plan of Education Department of Gansu Province
2022“Innovation Star” Project for Excellent Postgraduates of Gansu Province
Publisher
Springer Science and Business Media LLC