1. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Glorennec, P.-Y., Delyon, B., Hjalmarsson, H., and Juditsky, A., Nonlinear Black-Box Modeling in System Identification: A Unified Overview, Automatica, Vol. 31, pp. 1691–1724, 1995.
2. Leshno, M., LIN, V. YA., Pinkus, A., and Schocken, S., Multilayer Feed-forward Networks with a Nonpolynomial Activation Function Can Approximate Any Function, Neural Networks, Vol. 6, pp. 861–867, 1993.
3. Girosi, F., Regularization Theory??Radial Basis Functions and Networks,From Statistics to Neural Networks. Theory and Pattern Recognition Applications, J. H. Friedman, V. Cherkassky, and H. Wechsler (Eds.), Computer and Systems Sciences Series, Springer Verlag, Berlin, Germany, pp. 166–187, 1993.
4. Park, J., and Sandberg, I. W., Universal Approximation Using Radial-BasisFunction Networks, Neural Computation, Vol. 3, pp. 246–257, 1991.
5. Gelfand, I. M., and Fomin, S. V., Calculus of Variations,Prentice Hall, Englewood Cliffs, New Jersey, 1963.