Reference63 articles.
1. Avellaneda, M., and Torquato, S., Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media, Phys. Fluids A, 3 (1991), 2529–2540.
2. Banavar, J. R., and Schwartz, L. M., Magnetic-resonance as a probe of permeability in porous-media, Phys. Rev. Lett., 58 (1987), 1411–1414.
3. Beasley, J. D., and Torquato, S., New bounds on the permeability of a random array of spheres, Physics of Fluids A, 1 (1989), 199–207.
4. Berg, H. C., Random Walks in Biology, Princeton University Press, Princeton, New Jersey (1983).
5. Bergman, D. J., A limiting case of a diffusion in a composite, SIAM J. Appl. Math., 58 (1998), 772–779.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the sink strength and permeability of micro-cracked arrays;Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences;2003-05-08