1. Abd El All, S. (1996). La géométrie comme un moyen d’explication de phénomènes spatio-graphiques: une étude de cas, Mémoire de DEA de Didactique des Disciplines Scientifiques, Grenoble: University of Grenoble 1, Laboratoire Leibniz-IMAG.
2. Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.
3. Arzarello, F., Micheletti, C., Olivero, F., Robutti, O., & Domingo, P. (1998a). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings from the 22nd annual conference of the international group for the psychology of mathematics education (Vol. 2, pp. 24–31). South Africa: University of Stellenbosch.
4. Arzarello, F., Micheletti, C., Olivero, F., Robutti, O., Paola, D., & Gallino, G. (1998b). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd conference of the international group for the psychology of mathematics education (Vol. 2, pp. 32–39). South Africa: University of Stellenbosch.
5. Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Recherches en didactique des mathématiques, 19(1), 77–124.