1. Becker, Ying, Fei, Peng, and Lester, AnnaM. (2006). Stock selection : An innovative application of genetic programming methodology. In Riolo, Rick L., Soule, Terence, andWorzel, Bill, editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic andEvolutionary Computation, chapter 12, pages 315–334. Springer, Ann Arbor.
2. Becker,Ying L., Fox,Harold, and Fei, Peng (2007).An empirical study ofmultiobjective algorithms for stock ranking. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and Practice V, Genetic and Evolutionary Computation, chapter 14, pages 239–259. Springer, Ann Arbor.
3. Becker, Ying L. andO’Reilly, Una-May (2009). Genetic programming for quantitative stock selection. In Xu, Lihong et al., editors, GEC ’09: Proceedings of the first ACM/SIGEVOSummit on Genetic and Evolutionary Computation, pages 9–16, Shanghai, China. ACM. Costello, E., McGinty, L., Burland, M., and Smyth, B. (2007). The role of recommendation for flavor innovation and discovery. In IC-AI, pages 463– 469.
4. Keijzer, Maarten (2003). Improving symbolic regression with interval arithmetic and linear scaling. In Ryan, Conor et al., editors, Genetic Programming, Proceedings of EuroGP’2003, volume 2610 of LNCS, pages 70–82, Essex. Springer-Verlag.
5. Korns, Michael (2011). Accuracy in symbolic regression. Genetic and Evolutionary Computation, chapter 8. Springer, Ann Arbor.