1. George E. Andrews, MacMahon’s partition analysis. I. The lecture hall partition theorem, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math., vol. 161, Birkhäuser Boston, Boston, MA, 1998, pp. 1–22.
2. ________, MacMahon’s partition analysis. II. Fundamental theorems, Ann. Comb. 4 (2000), no. 3-4, 327–338.
3. George E. Andrews, Peter Paule, and Axel Riese, MacMahon’s partition analysis. IX. k-gon partitions, Bull. Austral. Math. Soc. 64 (2001), no. 2, 321–329.
4. ________, MacMahon’s partition analysis: the Omega package, European J. Combin. 22 (2001), no. 7, 887–904.
5. ________, MacMahon’s partition analysis VII. Constrained compositions, q-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 11–27.