1. L. M. Adleman, J. DeMarrais and M.-D. Huang, ‘A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields’, Lect. Notes in Comp. Sci., vol. 877, Springer, Berlin, 1994, pp. 28–40.
2. L. M. Adleman, C. Pomerance and R. S. Rumely, ‘On distinguishing prime numbers from composite numbers’, Ann. Math., 117 (1983), 173–206.
3. M. Agrawal, N. Kayal and N. Saxena, ‘PRIMES is in P’, Ann. Math., 160 (2004), 781–793.
4. O. Ahmadi and R. Granger, ‘On isogeny classes of Edwards curves over finite fields’, J. Number Theory, 132 (2012), 1337–1358.
5. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, CRC Press, Boca Raton, 2005.