1. G. A. Goldin and U. Moschella, Saclay preprint T94/029 (1994).
2. G. A. Goldin, “Current Algebras as Unitary Representations of Groups”, Ph. D. thesis, Princeton University (1969). G. A. Goldin and D. H. Sharp, in 1969 Battelle Rencontres: Group Representations, Lecture Notes in Physics 6, edited by V. Bargmann (Springer, Berlin, 1970), p. 300; G. A. Goldin, J. Math. Phys. 12, 462 (1971).
3. For more detailed reviews, see G. A, Goldin and D. H. Sharp, “Diffeomorphism Groups and Local Symmetries: Some Applications in Quantum Physics”, in Symmetries in Science III, edited by B. Gruber and F. lachello (New York: Plenum, 1989), p. 181; G. A. Goldin, “Predicting Anyons: The Origins of Fractional Statistics in Two-Dimensional Space”, in Symmetries in Science V, edited by B. Gruber, L. C. Biedenharn, and H.-D. Doebner (New York: Plenum, 1991), p. 259; G. A. Goldin and D. H. Sharp, Int. J. Mod. Phys. B5, 2625 (1991); and G. A. Goldin, Int. J. Mod. Phys. B6, 1905 (1992).
4. R. Dashen and D. H. Sharp, Phys. Rev. 165 (1968), 1867.
5. H.-D. Doebner and J. Tolar, in Symposium on Symmetries in Science, Carbondale, Illinois 1979, edited by B. Gruber and R. S. Millman (Plenum, New York, 1980), p. 475; B. Angermann, H.-D. Doebner, and J. Tolar, in Nonlinear Partial Differential Operators and Quantization Procedures, Lecture Notes in Mathematics 1037, edited by S. I. Andersson and H.-D. Doebner (Springer, Berlin, 1983), p. 171; H.-D. Doebner, H. J. Elmers, and W. Heidenreich, J. Math. Phys. 30 (1989), 1053.