Algebras and Symmetries — Quantum Mechanical Symmetry Breaking
Author:
Doebner H. D.,Tolar J.
Reference18 articles.
1. A.O. Barut, R. Raczka: Theory of Group Representations and Applications, PWN — Polish Scientific Publishers, Warszawa (1980).
2. H.D. Doebner, O. Melsheimer: On representations of Lie algebras with unbounded generators, Nuovo Cimento 49A:73–98 (1967).
3. H.D. Doebner, J.-E. Werth: Global properties of systems quantized via bundles, J. Math. Phys. 20:1011–1014 (1979).
4. M. Flato, D. Sternheimer: Poincaré partially integrable local representations and mass-spectrum, Commun Math. Phys. 12:296–303 (1969).
5. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer: Deformation theory and quantization I, II, Ann. Phys. (N.Y.) 111:61–110, 111–151 (1978).