Author:
Niederreiter Harald,Xing Chaoping
Reference46 articles.
1. M.J. Adams and B.L. Shader, A construction for (t, m, s)-nets in base q, SIAM J. Discrete Math. 10, 460–468 (1997).
2. A.T. Clayman, K.M. Lawrence, G.L. Mullen, H. Niederreiter, and N.J.A. Sloane, Updated tables of parameters of (t,m, s)-nets, J. Combinatorial Designs, to appear.
3. A.T. Clayman and G.L. Mullen, Improved (t, m, s)-net parameters from the Gilbert-Varshamov bound, Applicable Algebra Engrg. Comm. Comp. 8, 491–496 (1997).
4. M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications,Lecture Notes in Math., Vol. 1651, Springer, Berlin, 1997.
5. Y. Edel and J. Bierbrauer, Construction of digital nets from BCHcodes, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 221–231, Springer, New York, 1997.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Randomized Quasi-Monte Carlo: An Introduction for Practitioners;Springer Proceedings in Mathematics & Statistics;2018
2. Halton-type sequences from global function fields;Science China Mathematics;2013-04-10
3. Low-Discrepancy Simulation;Handbook of Computational Finance;2011-07-10
4. Quasi-Monte Carlo Methods;Encyclopedia of Quantitative Finance;2010-05-15
5. A New Lower Bound on the t-Parameter of (t, s)-Sequences;Monte Carlo and Quasi-Monte Carlo Methods 2006;2008