The microeconomics of data – a survey

Author:

Pino FlavioORCID

Abstract

AbstractIn recent years, academia, institutions, and policymakers have been focusing their attention on the impact of data in digital markets. The economic literature that explicitly models data and their collection as strategic variables is growing, but most studies focus on distinct settings with specific data uses. This survey aims to organise this literature to extract general insights that hold across different models and assumptions. To do so, I identify three classes of models according to the way they model data collection. I find that each class is characterised by a specific impact of data on the market outcomes, regardless of the specific data use. First, when firms obtain data without strategic interactions, their use has a pro-competitive effect on the market. However, firms fail to fully internalise the data externalities, leading to data overuse and, in turn, privacy concerns. Second, when firms collect data from their interaction with consumers, data can facilitate market tipping, especially if firms are asymmetric in their starting positions. Third, when firms acquire data from data intermediaries, data are strategically sold to temper competition in the downstream market, allowing intermediaries to extract most of the surplus at the expense of firms and consumers. These general insights can facilitate future research and help policymakers to have a more general understanding of the competitive effects of data, depending on the situation at hand.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

General Economics, Econometrics and Finance,General Business, Management and Accounting,Business and International Management,Economics and Econometrics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regulating data sales: The role of data selling mechanisms;Telecommunications Policy;2024-09

2. Data ownership, privacy concerns, and consumer welfare;Economic and Political Studies;2024-08

3. Data-Driven Mergers;Management Science;2024-04-09

4. On Three-Layer Data Markets;SSRN Electronic Journal;2024

5. Data-Driven Organizations;Reference Module in Social Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3