Perspective on the description of viscoelastic flows via continuum elastic dumbbell models

Author:

Boyko Evgeniy,Stone Howard A.

Abstract

AbstractNon-Newtonian fluid mechanics and computational rheology widely exploit elastic dumbbell models such as Oldroyd-B and FENE-P for a continuum description of viscoelastic fluid flows. However, these constitutive equations fail to accurately capture some characteristics of realistic polymers, such as the steady extension in simple shear and extensional flows, thus questioning the ability of continuum-level modeling to predict the hydrodynamic behavior of viscoelastic fluids in more complex flows. Here, we present seven elastic dumbbell models, which include different microstructurally inspired terms, i.e., (i) the finite polymer extensibility, (ii) the conformation-dependent friction coefficient, and (iii) the conformation-dependent non-affine deformation. We provide the expressions for the steady dumbbell extension in shear and extensional flows and the corresponding viscosities for various elastic dumbbell models incorporating different microscopic features. We show the necessity of including these microscopic features in a constitutive equation to reproduce the experimentally observed polymer extension in shear and extensional flows, highlighting their potential significance in accurately modeling viscoelastic channel flow with mixed kinematics.

Funder

United States - Israel Binational Science Foundation

National Science Foundation

Technion - Israel Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3