Deflated domain decomposition method for structural problems

Author:

Akiba HiroshiORCID

Abstract

AbstractThe paper presents a fast and stable solver algorithm for structural problems. The point is the distance between the eigenvector of the constrained stiffness matrix and the unconstrained matrix. The coarse motions are close to the kernel of the unconstrained matrix. We use lower-frequency deformation modes to construct an iterative solver algorithm through domain decomposition expressing near-rigid-body motions, deflation algorithms, and two-level algorithms. We remove the coarse space from the solution space and hand over the iteration space to the fine space. Our solver is parallelized, and the solver thus has two sets of domain decomposition. One decomposition generates the coarse space, and the other is for parallelization. The basic framework of the solver is the parallel conjugate gradient (CG) method on the fine space. We use the CG method for the basic framework instead of the (simplest) domain decomposition method. We conducted benchmark tests using elastic static analysis for thin plate models. A comparison with the standard CG solver results shows the new solver’s high-speed performance and remarkable stability.

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Miyamura T, Yamada T (2019) Feasibility study of full-scale elastic-plastic seismic response analysis of nuclear power plant. Mech. Eng. J. 6(6):19–002811900281. https://doi.org/10.1299/mej.19-00281

2. Miyamura T, Hori M (2015) Large-scale seismic response analysis of super-high-rise steel building considering soil-structure interaction using K computer. Int J High-Rise Build 4(1):75–83

3. Wu YS, Yang YB, Yau JD (2001) Three-dimensional analysis of train-rail-bridge interaction problems. Veh Syst Dyn 36(1):1–35

4. Yamada H, Miura H, Ebisawa K (2019) Improvement of fragility evaluation on seismic PRA—an evaluation method on realistic response of component considering dynamic nonlinear characteristics of building and enhancement of sub-response factor regarding input seismic motion. Research Report of Central Research Institute of Electric Power Industry, O18010, in Japanese

5. Morgan RB (1995) A restarted GMRES method augmented with eigenvectors. SIAM J Matrix Anal Appl 16(4):1154–1171

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3