Advanced computational technique based on kriging and Polynomial Chaos Expansion for structural stability of mechanical systems with uncertainties

Author:

Denimal E.,Sinou J.-J.ORCID

Abstract

AbstractIn this paper, a numerical strategy based on the combination of the kriging approach and the Polynomial Chaos Expansion (PCE) is proposed for the prediction of buckling loads due to random geometric imperfections and fluctuations in material properties of a mechanical system. The original computational approach is applied on a beam simply supported at both ends by rigid supports and by one punctual spring whose location and stiffness vary. The beam is subjected to a deterministic axial compression load. The PCE-kriging meta-modelling approach is employed to efficiently perform a parametric analysis with random geometrical and material properties. The approach proved to be computationally efficient in terms of number of model evaluations and in terms of computational time to predict accurately the buckling loads of a beam system. It is demonstrated that the buckling loads are substantially impacted not only by both the location and the stiffness of the spring, but also by the random parameters.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3