Author:
Hunt M. J.,Brosa Planella F.,Theil F.,Widanage W. D.
Abstract
AbstractThermal electrochemical models for porous electrode batteries (such as lithium ion batteries) are widely used. Due to the multiple scales involved, solving the model accounting for the porous microstructure is computationally expensive; therefore, effective models at the macroscale are preferable. However, these effective models are usually postulated ad hoc rather than systematically upscaled from the microscale equations. We present an effective thermal electrochemical model obtained using asymptotic homogenisation, which includes the electrochemical model at the cell level coupled with a thermal model that can be defined at either the cell or the battery level. The main aspects of the model are the consideration of thermal effects, the diffusion effects in the electrode particles, and the anisotropy of the material based on the microstructure, all of them incorporated in a systematic manner. We also compare the homogenised model with the standard electrochemical Doyle, Fuller & Newman model.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献