Bifurcations of drops and bubbles propagating in variable-depth Hele-Shaw channels

Author:

Thompson Alice B.ORCID

Abstract

AbstractThe steady propagation of air bubbles through a Hele-Shaw channel with either a rectangular or partially occluded cross section is known to exhibit solution multiplicity for steadily propagating bubbles, along with complicated transient behaviour where the bubble may visit several edge states or even change topology several times, before typically reaching its final propagation mode. Many of these phenomena can be observed both in experimental realisations and in numerical simulations based on simple Darcy models of flow and bubble propagation in a Hele-Shaw cell. In this paper, we investigate the corresponding problem for the propagation of a viscous drop (with viscosity $$\nu $$ ν relative to the surrounding fluid) using a Darcy model. We explore the effect of drop viscosity on the steady solution structure for drops in rectangular channels or with imposed height variations. Under the Darcy model in a uniform channel, steady solutions for bubbles map directly on to those for drops with any internal viscosity $$\nu \ne 1$$ ν 1 . Hence, the solution multiplicity predicted for bubbles also occurs for drops, although for $$\nu >1$$ ν > 1 , the interface shape is reversed with inflection points appearing at the rear rather than the front of the drop. The equivalence between bubbles and drops breaks down for transient behaviour, at the introduction of any height variation, for multiple bodies of different viscosity ratios and for more detailed models which produce a more complicated flow in the interior of the drop. We show that the introduction of topography variations affects bubbles and drops differently, with very viscous drops preferentially moving towards more constricted regions of the channel. Both bubbles and drops can undergo transient behaviour which involves breakup into two almost equal bodies, which then symmetry break before either recombining or separating indefinitely.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3