Quantum Join Ordering by Splitting the Search Space of QUBO Problems

Author:

Nayak Nitin,Winker Tobias,Çalıkyılmaz Umut,Groppe SvenORCID,Groppe Jinghua

Abstract

AbstractThe join order has a huge impact on the execution time of a query, such that finding an optimal join order plays a crucial role in query optimization. However, join order optimization is known to be NP-hard. Hence, in this paper, we propose an approach for accelerating join order optimization by quantum computers. We extend our previous approach supporting bushy join trees by splitting the search space of possible join orders and solving each of these subspaces on currently available quantum computers to optimize the join of more relations than our previous approach. We have integrated our approach to quantum query optimization in the relational database management system PostgreSQL to conduct studies with real-world queries. In our experiments, we show that we can perform join order optimization up to 7 relations for real-world queries using quantum annealing and up to 8 relations for artificial queries using simulated annealing with a reasonable number of QUBO problems solved by D‑Wave’s Quantum Annealer. Furthermore, we show that our approach can be also used to perform join-order for queries joining five relations on circuit-based quantum computers running the quantum approximate optimization algorithm (QAOA) and variational quantum eigensolver (VQE) approaches.

Funder

Universität zu Lübeck

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Scheufele W, Moerkotte G (1997) On the complexity of generating optimal plans with cross products. In: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems, pp 238–248

2. Nayak N, Rehfeld J, Winker T, Warnke B, Çalikyilmaz U, Groppe S (2023) Constructing optimal bushy join trees by solving qubo problems on quantum hardware and simulators. In: Proceedings of the international workshop on big data in emergent distributed environments, pp 1–7

3. Lewis MW, Glover FW (2017) Quadratic unconstrained binary optimization problem preprocessing: theory and empirical analysis. https://arxiv.org/abs/1705.09844 (CoRR abs/1705.09844). Accessed 14.03.2024

4. Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love PJ, Aspuru-Guzik A, O’Brien JL (2014) A variational eigenvalue solver on a photonic quantum processor. Nat Commun. https://doi.org/10.1038/ncomms5213

5. Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. ArXiv. https://doi.org/10.48550/ARXIV.1411.4028 (https://arxiv.org/abs/1411.4028)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3