Global characteristics of ambient seismic noise

Author:

Li Xiaomeng,Xu YanORCID,Xie Chaodi,Sun Shanshan

Abstract

AbstractAmbient seismic noise becomes more and more important and helpful on assisting velocity model inversion, earthquake detection, and ground motion prediction. Based on the analysis of continuous seismic data and ocean wave height, we find that the ocean wave height and winter storms have a controlling factor on the DF microseismic energy level and its frequency extent in time scale. It shows that high and low DF microseismic energy accompanied with wide and narrow frequency range consistent with the high wave height period (when the ocean is stormier) and low wave height period, respectively. Since DF microseism is dominated by Rayleigh waves, its energy attenuates very quickly when it travels through shoreline to the continent crust. Our observations give a quality factor Q of about 83 for DF energy traveling from the middle of the Atlantic to the central of Europe. We observe a lower energy level of SPDF (short period DF) than that of LPDF (long period DF) for the continent stations, however a reversed situation for the island stations. It suggests that short period DF energy decays faster than the long period one. High-frequency ambient noise is called microtremor. The microtremor for the island station with low elevation has a semidiurnal modulation in phase with ocean tide. The microtremor for the station at other locations are from the anthropogenic activities which have diurnal, weekly, and annually variations.

Funder

National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3