Suppression of wind turbine noise from seismological data using nonlinear thresholding and denoising autoencoder

Author:

Heuel Janis,Friederich Wolfgang

Abstract

AbstractSeismologists found a significant deterioration in station quality after installation of wind turbines (WTs), which led to conflicts between WT operators and seismic services. We compare different techniques to reduce the disturbing signals from WTs at seismological stations by selection of an affected station. WT noise and earthquake signals have overlapping frequency bands, and thus spectral filtering cannot be used. As a first method, we apply the continuous wavelet transform on our data to obtain a time-scale representation. From this representation, we estimate a noise threshold function either from noise before the theoretical P-arrival or using a noise signal from the past with similar ground velocity conditions at the surrounding WTs. As a second method, we use a denoising autoencoder (DAE) that learns mapping functions to distinguish between noise and signal. In our tests, the threshold function performs well when the event is visible in the raw or spectral filtered data, but it fails when WT noise dominates. The use of the threshold function and pre-noise can be applied immediately to real-time data and has low computational cost. Using a noise model from our prerecorded database at the seismological station does not improve the result and is more time consuming. In contrast, the DAE is able to remove WT noise even when the event is completely covered by noise. However, the DAE must be trained with typical noise samples and high signal-to-noise ratio events to distinguish between signal and interfering noise.

Funder

Europäische Fonds für regionale Entwicklung

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Reference39 articles.

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. URL https://www.tensorflow.org/, software available from tensorflow.org

2. Akbarinia R, Cloez B (2019) Efficient matrix profile computation using different distance functions. arXiv preprint arXiv:1901.05708

3. Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) ObsPy: a Python toolbox for seismology. Seismological Research Letters 81(3):530–533. https://doi.org/10.1785/gssrl.81.3.530

4. Bormann P, Wielandt E (2013) Seismic signals and noise. In: New Manual of Seismological Observatory Practice 2 (NMSOP2), Deutsches GeoForschungsZentrum GFZ, pp 1–62

5. Chollet F (2015) Keras available at https://github.com/fchollet/keras (last accessed june 2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3