Thermal kinetics of micro-defects in He-ion implanted W and W5Re alloys

Author:

Liu Yong-Li,Song Ya-Min,Li Lei,Bai Ruo-Yu,Zhang Peng,Zhang Qiao-Li,Jin Shuo-Xue,Zhu Te,Lu Er-Yang,Cao Xing-ZhongORCID,Wang Bao-Yi

Abstract

AbstractTo investigate the thermal evolution of vacancy-type defects in He-ion irradiated W and W5Re alloy, different isochronal annealing treatments from 373 to 1273 K were conducted on the irradiated materials. Positron annihilation spectroscopy including positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy were mainly used to characterize the micro-defects evolution. The results showed that the thermal evolution characteristics of defects in both W and W5Re were similar. After He-ion irradiation, mono-vacancies with positron annihilation lifetime of ~ 190 ps were detected in W, together with a large amount of dislocation loops with positron annihilation lifetime of ~ 150 ps in W5Re alloys. The coarsening of vacancy clusters at the expense of small vacancy clusters was the main thermal evolution feature of vacancy-type defects in both W and W5Re when annealing temperature increased to 1073 K. In this progress, the positron annihilation lifetime increased to ~ 350 ps (clusters composed of 4 –8 mono-vacancies) in both W and W5Re. As the temperature increased to 1273 K, the positron annihilation lifetime decreased to ~ 240 ps, which was attributed to a significant population reduction of the dislocation loops, the dissociation of large HenVm complexes and the annealing of micro-voids in both W and W5Re. The vacancy-type defects in W5Re were more susceptible to the annealing temperature because of the formation of vacancy cluster-Re complexes. Re clusters in irradiated W5Re alloy could serve as the nucleation sites of He bubbles, which promoted the swelling and protrusion formation on the surface.

Funder

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3