Analysis of Track Bending Stiffness and Loading Distribution Effect in Rail Support by Application of Bending Reinforcement Methods

Author:

Nabochenko OlgaORCID,Sysyn MykolaORCID,Gerber Ulf,Krumnow Norman

Abstract

AbstractRailway track is a linearly inhomogeneous object that consists of geometrical and elastic discontinuities such as bridges, transition zones, rail joints and crossings. The zones are subjected to the development of local instabilities due to quicker deterioration than the other tracks. Until now, there have been no efficient approaches that could fully exclude the problem of accelerated differential settlements in the problem zones. Many structural countermeasures are directed at controlling the sleeper/ballast loading with the help of fastenings/under-sleeper pad elasticities, sleeper forms and additional bending stiffness reinforcements. However, the efficiency of the methods is difficult to compare. The current paper presents a systematic approach in which the loading distribution effect in the rail support by application of two bending reinforcement methods is compared: auxiliary rail and under-sleeper beam. The study considers only the static effects to reach a clear understanding the influence of the main factors. The track equivalent bending stiffness criterion is proposed for comparing reinforcement solutions. The analysis shows that the activation of the bending stiffness of the reinforcement beams depends on the relative ratio of the rail fastenings stiffness and track support stiffness under sleepers (or under the under-sleeper beam). The comparison demonstrates that conventional auxiliary rail reinforcement solutions are ineffective due to their weak bending because of the high elasticity of fastening clips and the main rail fastenings. The share of an auxiliary rail is maximally 20% in the track bending stiffness and cannot be significantly improved by additional rails. The under-sleeper beam-based reinforcement solutions show noticeably higher efficiency. The highest effect can be achieved by the activation of the horizontal shear interaction between the under-sleeper beam and the rail. The additional track bending stiffness of the under-sleeper-based solutions is about 3.5 times more of the rail one and could be potentially increased to 6–10 times.

Funder

Rhomberg Sersa Deutschland GmbH

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3