A Three-Stage Prediction Method for Track Displacement During Shield Tunneling

Author:

Tan Lei,Cao Yuan,Wang FengORCID,Tang Tao,Wang Xi,Li Qiang

Abstract

AbstractTrack displacement is an important factor of track irregularity. Existing researches related with track displacement prediction generally ignore the influence from underground construction engineering such as shield tunneling, resulting in inaccurate estimation of track displacement. To fill this gap, we propose a three-stage framework to predict the track displacement when the shield tunnel under crosses the existing tunnel. Firstly, by considering the curved shield tunneling, a three-dimensional model is constructed to estimate the total ground displacement during the whole tunneling process. Furthermore, the soil-tunnel interaction model is established to estimate the deformation of the existing tunnel. To tackle the issue of unknown node displacements, cubic splines are used to interpolate the unknown values of tunnel displacements. On this basis, the direct stiffness method is used to estimate the track displacement and to calculate the track irregularity. Finally, the effectiveness of the proposed method is verified and the prediction performance on the track irregularity is evaluated using a real engineering case and the finite element simulation. The main contributions of this article lie in the modeling of the curved scenario for the estimation of the ground loss, as well as the combination of cubic splines and direct stiffness method, which improve the accuracy of the track displacement estimation during shield tunneling.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single Well Casing Loss Prediction Method Based on Machine Learning;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. Research on Automatic Troubleshooting Method of Power Grid Information System Based on Dependency Analysis;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3