Abstract
AbstractMany urban rail systems operate near capacity given the rapid increase in passenger demand, and unplanned disruptions are unavoidable. From a passenger perspective, the duration of trip delays is a major concern, and passenger trip delays may be longer than the train delays. Several studies have focused on predicting train delays, but the research on the duration of the disruption impacts on passenger trips is limited given that the duration is not observed directly. This paper proposes a probabilistic method to estimate the disruption impact duration using smartcard data, explores statistical and machine learning models to predict the duration of impacts on passengers, and identifies influencing factors including incident characteristics, operating conditions, infrastructure, external factors, and demand. The results highlight that prediction accuracies are acceptable for multiple linear regression, accelerated failure time, and random forest models. Disruptions caused by power failures have longer impact durations than other causes, followed by platform screen doors. The fixed block signaling system leads to a larger disruption duration than the moving block system. The study provides, for the first time, a data-driven approach to understanding the duration of the impact of disruptions on passenger trips using smartcard data which can facilitate timely and informed decision-making under unplanned disruptions.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献