Ballasted Track Behaviour Induced by Absent Sleeper Support and its Detection Based on a Convolutional Neural Network Using Track Data

Author:

Zhang Dawei,Xu Peijuan,Tian Yiyang,Zhong Chen,Zhang Xu

Abstract

AbstractWith development of the heavy-haul railway, the increased axle load and traction weight bring a significant challenge for the service performance and safety maintenance of the railway track. Conducting defect recognition on concrete sleepers and ballast using big data is vital. This paper focused on the detection of absent sleeper support in a ballasted track with an emphasis on the integration of model-based and data-driven methods. To this end, a mathematical model consisting of the wagon, track and wheel–rail contact subsystems was first established to acquire the necessary raw data for the data-driven method, in which the wagon was regarded as a 47-degree-of-freedom multi-body subsystem, and the track was treated as a multi-layer discrete-elastic support beam subsystem with absent sleeper support. Then, an architectural hierarchy of a three-layer  convolutional neural network (TLCNN) was developed, which includes three convolutional layers and two pooling layers, and a method for reconstructing one-dimensional sleeper vertical displacement to a two-dimensional time–space matrix was also proposed. Thirdly, verification was carried out by comparing the simulation and experimental results to illustrate the accuracy and reliability of the mathematical model, and the dynamic behaviour of the track with absent sleeper support was investigated. Lastly, the established TLCNN was used to train the raw data of the sleeper vertical displacement and detect the existence of absent sleeper support. Results show that the integration of model-based and data-driven methods was a reliable and effective approach for the detection of absent sleeper support. The proposed TLCNN can acquire and extract robust characteristics in a noisy environment. To handle more complex recognition tasks and further improve performance, deeper CNN models and larger sample sizes should be preferentially considered in practical applications.

Funder

Open project of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure

Chinese Postdoctoral Science Foundation

State Key Laboratory of Traction Power

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Shannxi Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3