Analysis and Prediction of Dockless Shared Bike Demand Evolving Around Urban Rail Transit Stations: Case Study in Shenzhen, China

Author:

Zhao Yingping,Wu Yiling,Zhang Xinfeng,Wang Yaowei,Zhang Zhenduo,Lu Hongyu,Ma Dongfang

Abstract

AbstractThe emergence of dockless shared bikes (DSB) has led to their use as an important transfer mode to urban rail transit (URT) stations. However, in highly populated areas such as subway stations in peak hours, there is increasing concern about the imbalance between the demand and supply of shared bikes. To promote smoother subway transfer trips using shared bikes, it is very important to estimate the DSB demand, especially the disparity in the volume of bike pick-up and drop-off demand around subway stations. This research first utilizes the Shenzhen metro usage data and DSB usage data, analyzes data regarding subway and shared bike usage, discusses their potential transfer uses, and finds great disparity in DSB demand between different subway stations. The catchment area method is used to estimate bike usage as a potential transfer mode to the subway, where the catchment area is defined as a radius of 150 m from the subway station center. The DSB trip demand is categorized into two types: pick-up and drop-off. The most recent deep learning method, adaptive graph convolutional recurrent network (AGCRN), is used to predict the DSB demand more accurately because of its ability in enabling the modeling of relationships between entities in a self-adapted graph, and the prediction is compared with long short-term memory (LSTM), spatiotemporal neural network (STNN), diffusion convolutional recurrent neural network (DCRNN), and Graph WaveNet. Results show that methods with graphs (STNN, DCRNN, Graph WaveNet, and AGCRN) perform better than LSTM, and methods with adaptive graphs (Graph WaveNet and AGCRN) outperform methods with static graphs in terms of mean absolute error (MAE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE). DSB prediction results show that AGCRN performs the best in this study. More data, particularly land use data and URT station volume data, are expected to improve the predictive accuracy of the method due to potentially improved graph representation of station characteristics and subway station volume correlations. And with more accurate prediction results, it will be possible to achieve a better balancing strategy for bike operation optimization for better bike usage, and thus for a higher transfer rate of DSB to subway.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

Reference47 articles.

1. SUTPC Shenzhen household travel survey report 2017

2. Daily SSZ Line density ranks the national first, 500km at the end of this year for Shenzhen metro 2017

3. Channel C China bike Sharing report: March 2017

4. iiMedia (2022) China Shared bikes user survey

5. Du M, Cheng L (2018) Better understanding the characteristics and influential factors of different travel patterns in free-floating bike sharing: evidence from Nanjing China. Sustainability 10(4):1244

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3