Influence of Structural Types of CRTS I Plate-Type Ballastless Track on Aerodynamic Characteristics of High-Speed Train

Author:

Du Liming,Bian Chenjie,Zhang Peng

Abstract

AbstractIn order to improve the running quality of trains on a ballastless track, the influence of the CRTS I ballastless track with different structures (flat-type and frame-type tracks) is investigated with respect to the aerodynamic characteristics of high-speed trains. In the present paper, the aerodynamic force changes on the head, middle, tail, and whole car of the high-speed train were studied under two conditions, with crosswind and without crosswind, and the influence of different crosswind speeds (10, 15, 20, 25, 30 m/s) on the aerodynamic force of the train was analyzed. The pressure and flow field distribution characteristics were also studied, and the reasons for the different aerodynamic characteristics of different track structures and trains running in different wind environments were analyzed, respectively. The results indicate that the ballastless track structure obviously influences the aerodynamic characteristics of the high-speed train. When there is no natural wind, compared with the flat track, the frame track reduces the drag and lateral forces of the train but increases the lift force. The frame track causes the drag force of the whole vehicle to decrease slightly (the maximum ratio is 2.15%), the lift force increases significantly (the maximum ratio is 12.55%), and the lateral force obviously decreases (the maximum ratio is 52.43%). The lift and lateral forces of the middle car are most affected, which is because the frame structure changes the vortex motion state of the middle car. Compared with the flat track, the drag force of each car on the frame track is reduced under the crosswind; the lift force of each car is increased, and the maximum increase in the lift force of the head, middle, and tail cars is 5.60%, 2.55%, and 3.63%, respectively; the lateral force of the tail car increases greatly at a wind speed of 15 m/s, reaching 6.84%. Due to the existence of the frame structure, the space under the vehicle increases, resulting in a decrease in the airflow rate and an increase in local pressure, which leads to changes in the train’s aerodynamic force. Meanwhile, the train’s aerodynamic change under the crosswind is smaller than that when there is no wind.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3