A Time Series Decomposition and Reinforcement Learning Ensemble Method for Short-Term Passenger Flow Prediction in Urban Rail Transit

Author:

Wu Jinxin,He Deqiang,Li Xianwang,He Suiqiu,Li Qin,Ren Chonghui

Abstract

AbstractShort-term passenger flow prediction (STPFP) helps ease traffic congestion and optimize the allocation of rail transit resources. However, the nonlinear and nonstationary nature of passenger flow time series challenges STPFP. To address this issue, a hybrid model based on time series decomposition and reinforcement learning ensemble strategies is proposed. Firstly, the improved arithmetic optimization algorithm is constructed by adding sine chaotic mapping, a new dynamic boundary strategy, and adaptive T distribution mutations for optimizing variational mode decomposition (VMD) parameters. Then, the original passenger flow data containing nonlinear and nonstationary irregular changes of noise is decomposed into several intrinsic mode functions (IMFs) by using the optimized VMD technology, which reduces the time-varying complexity of passenger flow time series and improves predictability. Meanwhile, the IMFs are divided into different frequency series by fluctuation-based dispersion entropy, and diverse models are utilized to predict different frequency series. Finally, to avoid the cumulative error caused by the direct superposition of each IMF’s prediction result, reinforcement learning is adopted to ensemble the multiple models to acquire the multistep passenger flow prediction result. Experiments on four subway station passenger flow datasets proved that the prediction performance of the proposed method was better than all benchmark models. The excellent prediction effect of the proposed model has important guiding significance for evaluating the operation status of urban rail transit systems and improving the level of passenger service.

Funder

National Natural Science Foundation of China

Major Project of Science and Technology of Guangxi Province of China

Interdisciplinary Scientific Research Foundation of Guangxi University

Innovation Project of Guangxi Graduate Education

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Urban Studies,Transportation,Automotive Engineering,Geography, Planning and Development,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3