Abstract
AbstractWe consider the irreducible representations each of dimension 2 of the necklace braid group $${\mathcal {N}}{\mathcal {B}}_n$$
N
B
n
($$n=2,3,4$$
n
=
2
,
3
,
4
). We then consider the tensor product of the representations of $${\mathcal {N}}{\mathcal {B}}_n$$
N
B
n
($$n=2,3,4$$
n
=
2
,
3
,
4
) and determine necessary and sufficient condition under which the constructed representations are irreducible. Finally, we determine conditions under which the irreducible representations of $${\mathcal {N}}{\mathcal {B}}_n$$
N
B
n
($$n=2,3,4$$
n
=
2
,
3
,
4
) of degree 2 are unitary relative to a hermitian positive definite matrix.
Publisher
Springer Science and Business Media LLC
Reference5 articles.
1. Bellingeri, P.; Bodin, A.: The braid group of a necklace. Math. Z. 283(3–4), 995–1010 (2016)
2. Birman, J.S.: Braids, Links and Mapping Class Groups. Annals of Mathematical Studies, vol. 82. Princeton University Press, Princeton (1975)
3. Bruillard, P.; Chang, L.; Hong, S.-M.; Plavnik, J.; Rowell, E.; Sun, M.: Low-dimensional representations of the three component loop braid group. J. Math. Phys. 56(11), 111707 (2015)
4. Bullivant, A.; Kimball, A.; Martin, P.; Rowell, E.: Representations of the necklace braid group: topological and combinatorial approaches. Commun. Math. Phys. 375(2), 1223–1247 (2020)
5. Kadar, Z.; Martin, P.; Rowell, E.; Wang, Z.: Local representations of the loop braid group. Glasg. Math. J. 59(2), 359–378 (2017)