Author:
Wu Helin,Ren Yong,Hu Feng
Abstract
AbstractIn this paper, we investigate some kind of Dynkin game under g-expectation induced by backward stochastic differential equation (short for BSDE). The lower and upper value functions $$\underline{V}_t=ess\sup \nolimits _{\tau \in {\mathcal {T}_t}} ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$
V
̲
t
=
e
s
s
sup
τ
∈
T
t
e
s
s
inf
σ
∈
T
t
E
t
g
[
R
(
τ
,
σ
)
]
and $$\overline{V}_t=ess\inf \nolimits _{\sigma \in {\mathcal {T}_t}} ess\sup \nolimits _{\tau \in {\mathcal {T}_t}}\mathcal {E}^g_t[R(\tau ,\sigma )]$$
V
¯
t
=
e
s
s
inf
σ
∈
T
t
e
s
s
sup
τ
∈
T
t
E
t
g
[
R
(
τ
,
σ
)
]
are defined, respectively. Under some suitable assumptions, a pair of saddle points is obtained and the value function of Dynkin game $$V(t)=\underline{V}_t=\overline{V}_t$$
V
(
t
)
=
V
̲
t
=
V
¯
t
follows. Furthermore, we also consider the constrained case of Dynkin game.
Funder
the Scientific and Technological Research Program of Chongqing Municipal Education Commission
the National Natural Science Foundation of China
the Natural Science Foundation of Shandong Province of China
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Bensoussan, A.; Friedman, A.: Nonlinear variational inequalities and differential games with stopping times. J. Funct. Anal. 16(3), 305–352 (1974)
2. Briand, P.; Coquet, F.; Hu, Y.; Mémin, J.; Peng, S.: A converse comparison theorem for BSDEs and related properties of $$g$$-expectation. Electron. Commun. Prob. 5, 101–117 (2000)
3. Chen, Z.; Chen, T.; Davison, M.: Choquet expectation and peng’s $$g$$-expectation. Ann. Prob. 33, 1179–1199 (2005)
4. Chen, Z.; Kulperger, R.; Jiang, L.: Jensens inequality for $$g$$-expectation: Part 1. C. R. Acad. Sci. Paris, Sér. I Math. 337, 725–730 (2003)
5. Cvitanic, J.; Karatzas, I.: Backward stochastic differential equations with reflection and Dynkin games. Ann. Prob. 24(4), 2024–2056 (1996)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献