Abstract
AbstractThe notion of approximate fixed point sequence, emphasized in Chidume (Geometric properties of Banach spaces and nonlinear iterations. Lecture Notes in Mathematics, 1965. Springer-Verlag London, Ltd., London, 2009), is a very useful tool in proving convergence theorems for fixed point iterative schemes in the class of nonexpansive-type mappings. In the present paper, our aim is to present simple and unified alternative proofs of some classical fixed point theorems emerging from Banach contraction principle, by using a technique based on the concepts of approximate fixed point sequence and graphic contraction.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Ait Mansour, M.; Bahraoui, M.A.; El Bekkali, A.: Metric regularity and Lyusternik–Graves theorem via approximate fixed points of set-valued maps in noncomplete metric spaces. Set Valued Var. Anal. 30(1), 233–256 (2022)
2. Amini-Harandi, A.; Fakhar, M.; Hajisharifi, H.R.: Approximate fixed points of $$\alpha $$-nonexpansive mappings. J. Math. Anal. Appl. 467(2), 1168–1173 (2018)
3. Bachar, M.; Khamsi, M.A.: On common approximate fixed points of monotone nonexpansive semigroups in Banach spaces. Fixed Point Theory Appl. 160, 11 (2015)
4. Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3, 133–181 (1922)
5. Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9(1), 43–53 (2004)