Abstract
AbstractLet $$k\ge 2$$
k
≥
2
. A generalization of the well-known Pell sequence is the k-Pell sequence. For this sequence, the first k terms are $$0,\ldots ,0,1$$
0
,
…
,
0
,
1
and each term afterwards is given by the linear recurrence $$\begin{aligned} P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)}. \end{aligned}$$
P
n
(
k
)
=
2
P
n
-
1
(
k
)
+
P
n
-
2
(
k
)
+
⋯
+
P
n
-
k
(
k
)
.
In this paper, we extend the previous work (Rihane and Togbé in Ann Math Inform 54:57–71, 2021) and investigate the Padovan and Perrin numbers in the k-Pell sequence.
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Baker, A.; Davenport, H.: The equations $$3x^2 - 2 = y^2$$ and $$8x^2 - 7 = z^2$$. Quart. J. Math. Oxford Ser. 2(20), 129–137 (1969)
2. Bravo, J.J.; Herrera, J.L.: Repdigits in generalized Pell sequences. Archivum Mathematicum 56(4), 249–262 (2020)
3. Bravo, J.J.; Herrera, J.L.; Luca, F.: On a generalization of the Pell sequence. Math. Bohema. 146(2), 199–213 (2021)
4. Bugeaud, Y.; Maurice, M.; Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Annals of Mathematics 163, 969–1018 (2006)
5. Dujella, A.; Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. 2(49), 291–306 (1998)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Common Terms of k-Pell and Tribonacci Numbers;European Journal of Pure and Applied Mathematics;2024-01-31